!l?Petr&edron Letters Vol. 21, pp 2987 - 29W @Per@mon Press Lta. 19uO. Printed in Great Britain

PETROPORPHYRINS IV', NUCLEAR UVERHAUSER ENHANCEMENT 'H NMR STUDIES OF DEDXO**-PHYLLOERYTHRDETIO PORPHYRINS FROM GILSONITE.**

J. Martin E. Quirke*, James R. Maxwell* and Geoffrey Eglinton. University of Bristol, Organic Geochemistry Unit, School of Chemistry, Cantock's Close, Bristol BS8 lTS, U.K.

and

Jeremy K-14. Sanders University of Cambridge, University Chemical Laboratory, Lensfield Road, Cambridge C82 lEW, U.K.

Abstract - Nuclear Overhauser enhancement 'H NMR analysis of a C31 and a C32 DPEP alkyl porphyrin 7rom the bitumen Gilsonlte (Eocene, Uinta Basin. Utah, U.S.A.) and oxidativa degradation studies indicate an origin from chloro~yll a.

The reported isolation of deoxophylloerythroetioporphyrin la and aetioporphyrin-III from **a** Triassic sediment", and proposals that these compounds were derived from chlorophyll <u>a</u> laid **the foundation of molecular geochemistry** ' . **Subsequent mass spectrometric studies showed that** alkyl porphyrins in geological samples occur as complex mixtures of two major polyalkylated **series: the deoxophylloerythroetio-(DPEP} and the aetia-types** , **with a maximum carbon nuder range of Cz6-C3g** 5-7 . **The demetallated alkyl porphyrins of the bitumen Gilsonite (Eocene, Uinta Basin, Utah, U.S.A.) have been separated into single carbon number species*, providing the oppor**tunity to test the above proposals. Unambiguous assignment¹ of the C₃₂ aetio porphyrin as aetio**porphyrin-III provides support for the above hypothesis; it remained essential, however, to** assign at least one of the DPEP porphyrins. Previous studies showed that the less polar of the two C₃₂ DPEP isomers⁸ coelutes with synthetic deoxophylloerythroetioporphyrin la on high perfor**mance liquid chromatography (HPLC). We describe here the isolation and analysis using nuclear** Overhauser enhancement (nOe) ¹H NMR of the less polar C₃₂ DPEP isomer, and a similar study of **the \$1 DPEP Porphyrin, the most abundant of the Gilsonite porphyrins.**

The demetallated C₃₁ DPEP porphyrin, and an isomeric mixture of the demetallated C₃₂ DPEP **porphyrins were isolated by TLC, as described previously8. The isomers were separated by** preparative HPLC on 5µ Partisil (25cm x 4.6mm i.d., stainless steel) by isocratic elution with **hexane-tnluene-chloroform (55:20:15, vol:vol:vol) at a flow rate of 1.5 ml min". The peaks** *were monitored spectrophotometrically at 499nm, and the less polar fraction (t_R 5.9 min) was* **isolated > 90% pure by HPLC.**

Metal-free porphyrins often give poorly resolved NMR spectra owing to aggregation'; thus, both the C_{31} and C_{32} compounds were converted to the Zn complexes⁹ which were examined by ¹H *fMR* (Table 1).

*** Present address: University of Durham, Departmant of Chemistry, Science Laboratories, South Road, Durham DHI 3LE, U.K.**

 $^{-1}$ H NMR of Gilsonite C₃₁ DPEP and less polar C₃₂ DPEP (as Zn complexes) Table 1.

Compound	Shift (δ ppm), multiplicity (no. of substituents) ^a					HRMS (M^T)	
	Ring CH ₂	Ring CH ₂ CH ₂	Ring CH ₂ CH ₃	Meso H	150cyc11c Rina	Requires	Found
C_{31} DPEP ^b	$\frac{3.62s}{3.58s}(5)$	4.15m $(2)^d$	$\begin{array}{c} 1.84t \\ 1.74t \end{array}$ (2)	10.11s) 5.34m, 462.278 10.08s) (3) 4.15m ^d)(1) 10.02s)			462,277
c_{32} DPEP ^C	$3.65 s$ (4) $4.09m(3)^d$		$\begin{array}{c} (1.86t) \\ (3) \\ (74t) \end{array}$	10.16s) 10.10s) (3) 10.07s)	5.38 md $\left\{ \left(1 \right)$ $^{476.294}$		476.29

^a In acetone-d₆ and ca. 10% pyridine-d₅; both spectra showed ca. 10% impurity.

 b Varian XL-100A-12.</sup>

 C JEOL PFT-100.

^d The ring CH₂-CH₃ and the B-attached CH₂ of the isocyclic ring overlap.

Previous work has shown that nOe studies can be used to determine the position of substituents on the porphyrin macrocycle¹⁰: irradiation of a ring CH₃ or CH₂ - group provides a <u>ca</u>. 15% increase in intensity of the adjacent meso (bridge) protons. The information obtained from the nOe experiments is summarised in Table 2. The results show that both the C₃₁ DPEP and C₃₂ DPEP porphyrins have an ethyl group on the D ring, flanking the isocyclic ring on the C ring (1)

Oxidation of the C₃₂ DPEP with chromic acid¹.8.11 revealed only 3-ethyl-4-methyl-pyrrole-
1H-2,5-dione, the C ring being degraded during the reaction¹². Thus, the combined spectrometric and degradative data prove that the substitution pattern of the C and D rings is identical to deoxophylloerythroetioporphyrin la. The compound could still be one or a mixture of three possible isomers la, lb, or Ic but it is most probable that it is la because it coelutes (HPLC) with the synthetic¹³ compound. Similarly, the C₃₂ aetic porphyrin from Gilsonite is aeticporphyrin-III¹, believed to be derived from the \tilde{c}_{32} DPEP skeleton¹⁴.

A similar degradative study of the c_{31} DPEP afforded 3,4-dimethyl-pyrrole-lH-2,5-dione and 3-ethyl-4-methyl-pyrrole-1H-2,5-dione in the ratio 1:2.2. The combined spectrometric and degradative data show that it also has the same substitution pattern in the C and D rings as deoxophylloerythroetioporphyrin la. The C₃₁ DPEP porphyrin is one, or a mixture of four

isomers Id-1g. If the compound is derived directly from chlorophyll a, the only likely structure is ld, formed by cleavage of the vinyl group, the only functional group present originally **in the A and B rings.**

a **Ab;p;;;e, nDe values have an uncertainty i 3% (i.e. 27% 1s 24-30X); relative values are** reliable. b.

Varian XL-lOOA-12.

 c^- **JEOL PFT-100.**

d **By definition, nOe = 0,**

е n0e low due to incomplete saturation of CH₃.

It seems unlikely that either DPEP compound would be formed in the sediment via the conversion of at least one methyl on the A or B ring to an ethyl substituent whilst the methyl groups in both the C and D rings remain intact. An alternative possibility, that the two porphyrins are derived from other, unknown precursor chlorins cannot be discounted. However, **the identification of aetioporphyrin-III as a major aetio porphyrin in Gilsonite does not support the latter hypothesis. All of the major porphyrins in Gilsonite contain methyl, ethyl and hydrogen B-substituents only'. This indicates that chlorophylls with extended** (> C₂) B-alkyl substituents, e.g. Chlorobium chlorophylls, are not major precursors of the **Gi lsonite porphyrins7. The origin of the porphyrins of Gilsonite cannot be fully understood** until the structure of the second (more polar) C₃₂ DPEP isomer is elucidated. The presence of this compound cannot be readily accounted for by the Treibs hypothesis³. Preliminary evi**dence suggests that it may not be derived from chlorophyll a, and may not contain a 5 membered isocyclic ring.**

Al though the structural data are incomplete for both the C31 and the less polar C32 DPEP porphyrins, the substitution pattern of the C and 0 rings is the same as in deoxophylloerythroetioporphyrin, the proposed 3*4 product of defunctionalisation of chlorophyll a **with the alkyl substituents in the latter remaining intact. The results provide direct evidence that the sedimentary DPEP alkyl porphyrins are derived mainly from chlorophyll 5**

Acknowledgements - We thank the American Gilsonite Company and Morris Ashby Ltd. for the gifts of Gilsonite. We are grateful to Professor E.W. Baker for the sample of synthetic deoxophylloerythroetioporphyrin. We also wish to **thank the National Aeronautics and Space Administration (subcontract from NGL 05-003-003) for financial support. The HPLC facilities were provided by the Natural Environment Research Council (GR3/2420). We are most grateful to Dr. M. Murray and Mr. J.R. Burton for obtaining NMR and mass spectra respectively.**

- **1. Petroporphyrins-III. J.M.E. Quirke and J.R. Maxwell, Tetrahedron, in press.**
- **2. A. Treibs, Ann., 509, 103 [1934).**
- 3**. A. Treibs, Angew.Chemie, 49, 682 (1936).**
- **4. A.H. Corwin. Proc.5thl World Petrol.Congr.New York, 5, 109 (1959).**
- 5. D.W. Thomas and M. Blumer, Geochim.Cosmochim.Acta, 28, 1147 (1964).
- **6. E.W. Baker, J.Am.Cheml.Soc., g, 2311 (1966).**
- **7. E.W. Baker, T.F. Yen,** J.P. **Oickie, R.E. Rhodes and L.F. Clark,** J.An.Chem.Soc., 89, 3631 **(1967).**
- **8. J.M.E. Quirke, G. Eglinton and J.R. Maxwell,** J.Am.Chem.Soc., **101, 7693 (1979).**
- 9. R.J. Abraham, F. Eivazi, H. Pearson and K.M. Smith, Tetrahedron, 33, 2277 (1976).
- **10. J.K.M. Sanders, J.C. Watertan and I.S. Denniss, J.Chem.Soc.Perkin I, 1150 (1978).**
- **11. R.K, Ellsworth and S. Aronoff, Arch.Biachem.Biophys., 124. 358 (1968).**
- **12. J.M.E. Quirke,** 6.3. **Shaw,** P.D. **Soper and J.R. Maxwell, Tetrahedron, in press.**
- **13. E.W. Baker, A.H. Cotwin, E. Klesper and P.E. Wei,** J **.Org.Chem., 2, 3144 (1968).**
- **14. B.M. Oidyk, Y.I.A. Alturki. C.T. Pillinger and G. Eglinton, Nature, 256, 563 (1975).**

(Received **in UK** 13 May 1960)

2990